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T R A N S I T I O N  R A D I A T I O N  I N  T W O - D I M E N S I O N A L  

E L A S T I C  S Y S T E M S  

A. I. Vesnitskii ,  A. V.  Kononov ,  and A.  V. Metrikin UDC 624.07:534.1 

Transition radiation [1, 2] of elastic waves arises in the process of uniform linear motion of a mechanical 
object along a nonhomogenous system [3]. Examples of constructions in which transition radiation takes place 
are a railway interacting with carriage wheels, a bridge with cars moving over it, runways, etc. In practical 
applications, the most important characteristics of the transition radiation of elastic waves are the following: 
1) radiation reaction; 2) radiation energy and its spectral-angular density; 3) transversal acceleration of an 
object in the process of radiation. The radiation reaction, whose value increases sharply as the object moves 
near the clamping point of the elastic system, can be a cause of rapid exhaustion of a structure. In addition, 
as will be shown in the present article, both the value and the direction of radiation reaction change as the 
object moves; therefore, a controlling force is required for maintaining its uniform linear motion. The spectral- 
angular density of radiation energy may serve as a natural parameter making it possible to test the condition 
of the elastic systems. The transverse acceleration of an object is, probably, the most important characteristic 
of radiation. The reason is that in the process of radiation the inertial force acting on the object can become 
equal to the force pressing the object to the elastic system. And if their directions happen to be opposite, the 
object and the elastic structure will depart, which leads to a highly undesirable shock mode of interaction. 

The present article deals with the transition radiation of elastic waves in a semiinfinite plate lying on 
an elastic base. It is assumed that a point mass in a gravity field, moving uniformly and linearly along the 
plate, is the source of excitation. The spectral-angular density of radiation energy has been found. It is shown 
that the radiation reaction, whose value and direction nonmonotonicaily depend on time, acts on a mass. The 
transverse acceleration of the mass in the process of radiation has been analyzed. The range of parameters of 
a system at which the body departs off the plate is determined. 

1. Consider a uniform rectilinear R = V T  (V = (VI, V2) = const, R = (X, Y)) motion of a point 
mass M along a semiinfinite plate hinge supported at X = 0, with density p, thickness h, and cylindrical 
stiffness D, lying on an elastic base with a stiffness k. In a linear approximation, the continuous oscillations 
of the mass and the plate, according to [4, 5], are described by the system of equations 

2Utt"4-A2yV-~ V - ~  - m ( 1 A t - 2 y ( t ) ) 5 ( X - V l l ! ) 5 ( y - v 2 t ) ,  - ~  < y < -~-oo, x ~< 0, t ~< 0, 

U(O,y,t) = Uzz(O,y,t) = O, (1.1) 

U(vlt, v2t, t) = y(t). 

Here U(x, y, t) and y(t) are dimensionless transverse displacements of the plate and the mass; x = X v / ~ v  , 

y -- Y ~ f ~ ,  and t -- Tt~wr2 (u 2 = D/ph and #2 = k/ph) are the dimensionless coordinates and the 

time; v = (vl,v2) -- V/[V~p[ = V / ~  and m = M#/vph are the dimensionless velocity and the mass, 
respectively; Azy = 02/0x 2 + 02/0y 2 is a two-dimensional Laplacian; and 5(. . .)  is a dimensionless 5-function. 
The conversion to the dimensionless displacements of a mass and a plate is realized via multiplication by 
#2/g, where g is the gravitational acceleration. 
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In what follows, we assume that the mass motion velocity does not exceed the minimum phase velocity 
of the shear waves in a plate, i.e., IVl < Ivcrl = 2 ~ / ~ ,  Ivl < 1. In this range of velocities a body moving far 
from the clamping does not radiate any elastic waves, but it excites a localized (exponentially decreasing with 
distance from the mass) self-field of strains, stationary in the system of coordinates connected with the body. 
We will find the expression describing this field. To this end, we will solve the problem of a constant load 
moving along an infinite plate (far from the clamping the body moves horizontally and ~(t) = 0). According 
to (1.1), in the system of coordinates ~ = x - v l t ,  ~ = y - v2t moving together with the mass, this problem 
takes the form 

1,,,o 
~,--~'- + Or/] U + A~,TU + U = -m6(~)g(r/),  (1.2) 

U(~, r/) -~, 0 at ~2 + r/2 ~ c0. 

Applying the Fourier transform 
CO 13~ 

to (1.2), we obtain the following expression for W, describing in the space of images the proper field 

wrn = - m ( 1  + (k~ + k~) ~ - 2 ( , lk l  + v2k~)~) -1 

Searching for an inverse transform for W m and reducing the derived expression to the form convenient 
for numerical analysis, we obtain 

O@ OO 

urn(~,r/)  = (27r) -2 / / Wrn ei(klf+kln)dkl dk2 = m(I1  + h)/s . ,  (1.3) 

where 

and 

'~/2cos (P s ei~il'l/v I1 = - 2  I c~ (c2)) Re -- L Sl 
0 

eiS21al/v 
- -  d ~ ;  
82 J 

12 = J7 COS (pVI-~ ~ _+i 1 ) Re k ~ e-S3ipi/v--s3 e-s4lql/vs4 ) d~. 
0 

Here p = ~ cos(0) + 7# sin(0); q = - ~  sin(0) + r/cos(0); tg 0 = v2/v 1 (0 is the angle between the normal to the 
clamping and the direction of motion of the mass read counterclockwise, hereafter referred to as the incidence 
angle); v ----Ivl; 

81,2 = q- -cos2r  Im(sl,2) > 0; 

s3,4 = ~/~2 T 2 v2a~ + 1. 

Figure 1 shows the self-field of plate displacements under a moving load Um(~, r/). It is significant that, 
unlike the self-field of an electron in a medium [1] or the self-field of a constant load in a membrane [6], 
Um(~, r/) is bounded, decreases with distance from the load nonmonotonically, and is not centrally symmetric. 

Now we turn directly to solving the problem (1.1). It is natural to take the expression of the 
characteristic field U rn in an infinite plate, 

U(x, y, t) --+ urn(x ,  y, t) when t --~ - e ~  (1.4) 

as its initial condition. 
2. As one can see from the set-up of (1.1), when the condition 

2l/)(t)l << 1 at t e l  - ~ , 0 ]  (2.1) 
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Fig. 1 

is fulfilled, the transversal force exerted by ,the mass on the plate may be considered constant. 
Assuming that the condition (2.1) holds, we investigate the problem (1.1), (1.4), (2.1) in two ways: 

by the method of images [7], providing an explicit expression for the radiation reaction (the longitudinal 
component of the force exerted by the plate on the mass), and by the spectral method, permitting the transition 
radiation to be analyzed adequately using the available standard means of measurement and experimental 
data processing. 

Analysis of the problem by the method of images. According to this method, the solution to problem 
(1.1), (1.4), (2.1) at x ~ 0, t ~ 0 coincides with the solution to the auxiliary problem of motion of two loads 
(a real load m and a fictious load - m ,  moving symmetrically about the axis x -- 0) along an infinite plate. 
Therefore, at t ~ 0 the solution to problem (1.1), (1.4), (2.1) has the form 

u - ( x , y , t )  = u m ( x , y , t )  - y , t ) .  (2.2) 

At t > 0 the plate performs free oscillations with the initial conditions defined by expression (2.2) 
at t ~ 0. Being nontrivial, these conditions give rise to free waves in the plate, representing the transition 
radiation. It is interesting to note that at 0 = 0 (normal incidence) the displacement of the plate at the 
moment when the mass passes through the clamping (t = 0) is equal to zero, and at t > 0 the plate oscillates 
only at the cost of the nonzero initial velocity Ut(x, y, 0). In the case of inclined incidence (0 ~ 0), both the 
displacement and the velocity of the plate are nonzero at t = 0. 

Expression (2.2) allows one to determine the reaction of radiation F r acting on the moving mass (the 
process of radiation formation takes place at t < 0 as well). According to [5] and (2.2), in the considered case 
we obtain the following expression for Fr: 

F~ = (F~,Fy) = -VxyU-I~=~It = VxyUm(-x,y,t)l~=vl~ 
Y=V2t y=v2t 

The functions F~(t) and F~(t) for the cases 0 = 7r/9 and 0 = ~r/3 are plotted in Fig. 2 (for calculations we 
assumed m = 1 and v = 0.5), where, for convenience, the arrows indicate the direction of F r in the system 
of coordinates (x, y). Analyzing Fig. 2, one can make the following conclusions: 1) both the value and the 
direction of the radiation reaction depend on time, and this dependence is not monotonic; 2) the amplitude 
of oscillations of the radiation reaction increases as the body approaches the clamping point; 3) the radiation 
reaction oscillates more frequently at smaller angles of incidence. 

Thus, to maintain the uniform linear motion of the object near the clamping point, it is necessary to 
apply the controlling force R = - F  r, which varies in value and direction. The force R must increase as the 
body approaches the clamping and its frequency must increase with decrease of the angle of incidence, 0. 

Analysis of the problem by the spectral method. We apply to the problem (1.1), (2.1) the Fourier 
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transform of t ime and coordinate y: 

i I 
--00--00 

In the images we obtain 

U ( x, y, t) ei(~t-k2Y)dt dy. 

w ~  - 2k~w~.  + (kJ - 2~ ~ + ~ ) w  = - A  e~a~/", 
v 

w(o, k . , ~ )  = w ~ ( o ,  k . , ~ )  = o. 
(2.3) 

Here A = m~ cos 0 and f~ = (w - k2v sin 0)/cos 0. 
Given the limited displacement of the plate at x ~ - o e ,  the solution (2.3) can be written as a 

superposition of the constrained solution (the proper field) 

W m = Ceif~x/v, 

where C = -Ava / ( ( f~  2 + k2v2) 2 - v4(2w 2 - 1)), and the free solution 

W fr = W r + W ~ = A1 (k2, w) e in1* + A2(k2, w) e in2~, (2.4) 

where fll  = ( -k~  + ~ ) 1 / 2 ;  a2 = - i ( k  2 + ~ ) 1 / 2 .  The first summand in (2.4) in the wave zone 
describes the transition radiation, while the second, a near field exponentially decreasing in the vicinity of the 
clamping. 

The expressions for A1 and A2 can be determined from the boundary conditions at z = 0 and have 
the form 

Av 
A1,2 

4 " 2 ~  - 1 ( 0  2+k22 v2 T v2 2x~ - l ) " 
(2.5) 

We find the energy of transition radiation with the help of the Hamil ton method described in [1]. 
According to this method,  the expression for the total energy of radiation can be written as 

f i _.Sx y. (2.6) 
- - O O - - O O  

Here h ~ = (2Ut 2 + (V~yU) 2 + U2)/2 is the dimensionless density of energy of a spring-loaded plate; U = U ~, 
where U ~ is the Fourier transform of W r. 

To evaluate (2.6), we represent U r in the form of the Fourier integral 
o o  

ur(x'Y't)=(27r)-2 i i gx(k2'w)ei(f~lx+k2y-wt)dk2dw" (2.7) 
- - ~ - - 0 0  
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Substituting (2.7)into (2.6) yields 
oO O0 

1 
f f + + + 2k2 211 1 + 1) H r ~ " ~  

- - O o  ~ o o  

x A1 (w, ks)A1 (~, l'r e i(nx +f i l )Z+ i (k2+k2)Y+i (w+w)dk2  d'~:2 dw d& dx dy. 

Integrating with respect to x and y, using the formulae [8], 

1 
5(x) = ~  f e ; ~ a o ,  

~ O O  

and taking into account the properties of the 5-function, we obtain 

a2v2 7 7 w(-k~ + 2wv/2-w-g--S'-f-1)l/Sdwdks H ~ (2.8) 

We introduce the angle ~ between the wave vector of radiation k = (kl, ks) and the normal to the clamping 
(~ is read counterclockwise). In that  case 

kl _ ( - k ]  + ~ - 1 )~/2 
c o s ~  - Ikl ( 2 ~  2 - -  1) 1/4 ' 

- k s  -k2  
sin qo = - -  = 

Ikl ( 2 ~ 2 _ 1 ) 1 / 4 "  

Taking the above relations into account, we now rewrite (2.8) in the form (wcr = 1 /v~)  

oo r/s 
nr= f / ~r(w'~)dwd~' 

wc~ -~/2 

where 
~Z2V 2 w cos  2 

Q'(w'  ~') - 432 cos2(O) ( (~  + v sin 0 sin ~,(2~2 - 1)1/4)2/cos2 0 - v2 cosS ~,2v% -~ - 1 )s 

is the spectral-angular density of the energy of radiation. 

(2.9) 
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The function Qr(~, ~) at the angle of incidence 0 = w/4 is shown in Fig. 3 (in the calculations we 
assumed m = 1 and v = 0.5). One can see that the maximum of radiated energy corresponds to the angle 

= -0 .  That  result is rather obvious, as the field of radiation arises in the process of reflection of the mass 
self-field from the clamping, and the rule "the angles of incidence and reflection are equal" is valid here. 
Analysis of expression (2.9) shows that the greater v, the narrower the angle corresponding to the major part 
of radiated energy. Hence, as v grows, the process of transition radiation increasingly resembles the process 
in which an elastic ball hits a wall. 

3. Until now we have analyzed the problem under the assumption that the mass inertia is neglegible 
compared with its weight, i.e., 21#(t)[ << 1 [see (2.1)]. However, a look at the characteristic field of mass 
deformations (see Fig. 1) is enough for one to see that near the clamping the self-field, being reflected, will 
swing the mass transversally to the direction of motion. Obviously, such parameters ra, v, and 0 of the 
problem exist under which condition (2.1) is not correct. Moreover, it can happen that at the moment t* < 0 
the equality 2~(t) + 1 = 0 is fulfilled, which means that the contact between the mass and the plate is broken. 

To test the assumptions stated, we consider problem (1.1) without neglecting the inertia of the mass. 
Using the method of images, we now rewrite (1.1) in the form 

2 2u, ,  + + u = - m ( 1  + - v l t )  - v2 t )  - + v l t )  6 ( y  - v 2 t ) ) ,  

- o o  < y < +cr - o o  < x < +oo, t ~ 0, 

U(v l t , v2 t ,  t) = y(t) ,  (3.1) 

[ U ( x , y , t ) [ ~ O  at [ X - v l t [ ~ o c ,  [ y [ ~ o o .  

We search for a solution to problem (3.1), coinciding with the solution to problem (1.1) at x ~< 0, in the form 

g = u ,  + u2,  

where U1 is the solution to (3.1) at ~(t) -- 0, i.e., it coincides with U-  [see (2.2)], and U2 is the solution to 
the problem 

LU2 = - 2 m i j ( t ) ( 5 ( x  - v l t )  5(y - v2t) - 5(x + v l t )  5(y - v2t)) (3.2) 

with boundary conditions from problem (3.1) (L = 202/0 t  2 + A2y + 1 is the differential operator of the 
equation of transverse oscillations of a spring-loaded plate). 

We find a fundamental solution to [9] for L, i.e., we solve the problem 

= (3.3) 

under the condition of boundedness of G at infinity. 
Applying to (3.3) the Fourier transform 

O0 CO 

- - 0 o - - o o  

[k = (kl, k2), r = (x, y)], we obtain 

2Vtt q- ([k[ 4 + 1)V = 5(t). 

Using the fundamental solution for the operator c32/0t 2 + a 2 (see [9]), applying the inverse Fourier transform, 
then turning to the new integration variables (p, a), according to the rules kl = pcos a and k2 = psin a, and, 
finally, integrating with respect to a, we have 

__ 1 7 pJo(p]r~) ('VT~+ 1) 
G(r, t)  j sin dp. (3.4) 

Here J0(---) is a Bessel function of zero order. 
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Fig. 4 
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Taking (3.3) into account, we rewrite the solution to problem (3.2) as 

t 

u s  = 2 m  / 9 ( r ) ( C ( x  + v l r ,  y - v2r,  t - r )  - C ( x  - v l r ,  y - v2r,  t - r ) )  dr. 

--OO 

Our aim is to evaluate the transverse acceleration of a mass, /)(t). For this, we use the condition of 
joint oscillations of a mass and plate U(vat ,  v2t,  t )  = y ( t ) ,  which brings us to the integrodifferential equation 
for y(t ) :  

t 

y ( t )  --= U - ( v l t ,  v2t ,  t )  A- 2 m  _/ y(r) (a(Vl  (t A- r) ,  v2(t  - r),  t - r )  - G(Vl  (t - r) ,  v2(t  - r) ,  t - r ) )  dr. (3.5) 
--CO 

Equation (3.5) allows us to find the function ~)(t) and to determine from the condition 2~(t) + 1 = 0 the 
parameters of the problem under which a mass departs off the plate at t < 0. 

After reduction to a Volterra equation of second kind for ~(t), Eq. (3.5) was numerically analyzed. The 
qualitative form of the function ~)(t) is shown in Fig. 4. The intersection of the curve ~(t) with the horizontal 
i) = - 1 / 2  indicates that the break of contact between the mass and the plate occurs at t = t* and Eq. (3.5) 
at t > t* becomes incorrect. The curves m = m * ( v )  dividing, at different 0, the plane of the parameters (m, v) 
into the domain of joint motion (below the curve) and the domain of motion with depart (above the curve), 
are demonstrated in Fig. 5. One can see that m*, the mass of the body at which break of contact takes place, 
increases with growth of the angle of incidence 8 and the velocity of motion v. 

The analysis of the problem of motion of a mass along a semiinfinite plate, carried out in the present 
article, allows us to make the following conclusions: 1) in the process of uniform motion of a mechanical 
object along a two-dimensional elastic system, transition radiation of elastic waves originates; 2) the maximum 
radiation energy falls on the angle symmetric to the angle of incidence relative to the normal to the clamping; 
3) the object moving near the clamping point is subjected to radiation reaction which is variable in value and 
direction, and to maintain the body's uniform linear motion, a controlling force is required; 4) in the process 
of motion of the object near the clamping point, the contact between the elastic system and the moving object 
can be broken, thus giving rise to a shock mode of interaction. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 94-01-01416-a). 
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